Project Description

The goals of the project were to reconstruct the asphalt pavement, increase pedestrian and cyclist safety, improve connectivity between neighborhoods, install better lighting, encourage more active transportation along the improved linear parkway connecting to Los Gatos Creek County Park and Trail and reduce the roadway carbon footprint. After undergoing the “road diet” project, the pavement width on Hacienda Avenue went from 65-70 feet to 52 feet, accommodating 11-foot vehicle lanes, parking lanes, and new bike lanes.

Key Elements

- Hacienda Avenue is a high capacity, residential collector street
- The project addressed 1.1 miles of road with an 18-acre drainage area.
- 63 biotreatment areas were installed along both sides of the street for a total surface area of 26,000 sq. ft.
- New bulb-outs at intersections calm traffic and improve pedestrian safety by reducing crosswalk distance

Completion Date
November 2015

Project Duration

Costs
Total Project Cost $6,779,115
Construction - $5,837,997
Design - $448,608
Project Management - $492,510

Funding
$4,145,115
- City Funds (60%)
$2,634,000
- Grants (40%)

Grants
State Department of Water Resources
Proposition 84
Chapter 2 Integrated Regional Water Management (IRWM) Grant Program

LOCATION
Hacienda Avenue from Winchester Boulevard to Burrows Road
Campbell, CA
Key Elements (continued)

- Original roadway had a very wide right of way, no cycling facilities, and discontinuous sidewalks
- Area has highly infiltrative underlying soils
- A flush curb allows roadway runoff to sheet flow into the biotreatment areas sized using SCVURPPP methodology (combination flow and volume approach)
- Roadway pavement was reconstructed with in-place recycled material
- 60 new street trees installed in tree wells in parking lanes reduce roadway heat island effect
- Bay-Friendly low maintenance and drought resistant landscaping
- Continuous sidewalks were added on both sides, separated from roadway by planting areas

Additional Benefits

- Reduced localized flooding
- Energy efficient, durable LED street lighting
- New bike lanes and improved bus stops
- Educational signage
- Project earned Greenroads Silver Certification (Score 43, Silver) and is a Bay-Friendly Rated Landscape (Score 97)

Project Outcomes and Lessons Learned

- Reduced roadway width required driveway extensions. Construction activities were coordinated with property owners to minimize access disruptions.
- Biotreatment areas required lowering of sewer and underground utility service laterals. Utility relocation work was completed before street work to minimize potential delays.
- Biotreatment areas constructed directly above native soils without media fabric. Underdrain not required due to highly infiltrative underlying soils. An overflow system connects to storm drain system. Biotreatment areas are lined along the sides to prevent engineered soil from mixing with native soil.
- Cobbles found in the roadway subgrade and biotreatment areas were crushed onsite for use in the roadway base. Excessive size and quantity of cobbles meant adding rock crushing process and two weeks of roadway closure.
- Full depth reclamation (FDR) approach saved the City half the cost of the conventional alternative to remove and replace the old street by reusing more than 80% of what was there.

Additional Information

City Website
www.cityofcampbell.com/567/Hacienda-Avenue-Green-Street-Improvement Project background, Greenroads and Bay Friendly certification links, and SFEI monitoring report.

Other Project Information
Presentation from SCVURPPP Site Design Awards 2016
www.scvurppp-w2k.com/pdfs/1516/wshop_c3_2016/3_Atre_2016_Site_Design_Awards_final.pdf

PROJECT CONTACTS
Public Works Department
Email: publicworks@cityofcampbell.com
Project Description

The Southgate Neighborhood Storm Drain Improvement and Green Street Project was a partnership project between the Southgate Neighborhood residents and the City of Palo Alto to help alleviate localized drainage issues while providing opportunities for improved water quality. In addition, the project integrated elements of the City of Palo Alto Bicycle and Pedestrian Transportation Plan to allow for traffic calming and safer pedestrian and bicycle access for the neighborhood.

Key Elements

- Project site is residential neighborhood with narrow streets and on-street parking.
- Two types of biotreatment areas used -- with underdrain and with infiltration columns -- for a total surface area of approx. 3,200 sq. ft.
- Permeable pavers were used in crosswalks and along a walkway, covering approx. 3,200 sq. ft.
- Biotreatment area planter designs minimized the impact to mature trees
- Biotreatment bulb-outs were also utilized for traffic calming and to minimize parking loss
- Project included new storm drain inlets, pipelines, and pavement resurfacing in some areas

Completion Date
February 2015

Project Duration
Community Meetings: 2012 – 2013
Construction of crosswalks: February 2015

Funding and Costs
Project funded by City of Palo Alto Stormwater Management Fees
Total Cost $1,894,025
Construction Cost - $1,589,025
Design Cost (Design Consultant Services Fee) - $305,000

Photo: Curb cuts allow stormwater to enter depressed biotreatment areas, which are installed in curb bulb-outs at multiple street corners and intersections in the neighborhood.

Pervious Pavement
Permeable concrete pavers covering approx. 3,200 sq. ft. are used along crosswalks and a pedestrian walkway

Biotreatment
16 biotreatment areas (approx. 3,200 sq. ft. of bulb-outs and planter strips) treat stormwater runoff

LOCATION
Neighborhood between El Camino Real and Alma St. (east of Palo Alto High School)
Palo Alto, CA
Project Outcomes and Lessons Learned

- Utility conflicts, existing trees, and flat slope affected shape of some biotreatment areas.
- Shallower aggregate layer was used in biotreatment areas with underdrains due to conflicts with the storm drain system (existing drain depth).
- Early community outreach helped shape the streetscape design to address rideability and concerns regarding potential reductions in on-street parking.
- Early coordination with City Arborist on street trees and coordination with other city projects within the neighborhood were keys to success.
- Potholing was used to identify potential utility conflicts; however, more utility relocations occurred than anticipated.
- Sand layers below the concrete interlocking pavers enhance pollutant removal and protect groundwater quality.
- Installation of concrete bands prevents paver migration in crosswalks.
- Use of infiltration columns allows stormwater to infiltrate into a more porous soil layer.

Additional Information

City Website
Project updates, community meeting agendas / presentations.

Other Project Information
SCVURPPP C.3 Workshop Presentation on Southgate Neighborhood:
http://www.scvurppp-w2k.com/pdfs/1314/workshop060414/12_Carlet_Southgate%20Neighborhood_%20June%202014.pdf

PROJECT CONTACTS

Public Works Department - Engineering Division:

Email: pwecips@cityofpaloalto.org

Project Engineer: Shari Carlet (650) 329-2456
MARTHA GARDENS GREEN ALLEYS

GREEN STREET PROJECT
SAN JOSE, CALIFORNIA

Project Description

Three residential alleys in the Martha Gardens neighborhood near downtown San Jose, which were previously covered with deteriorated asphalt and bare soil, now feature permeable pavement and concrete made from recycled content. A trench constructed underneath the permeable pavement collects stormwater runoff. The project improves drainage and aesthetics while adding stormwater storage, infiltration, and filtration to remove pollutants.

Key Elements

- Three residential alleys totaling over 35,000 square feet have been replaced with recycled content concrete and permeable pavers.
- Aggregate-filled trench beneath pavers stores and infiltrates runoff to reduce flows to the storm drain system.
- A layer of porous sand and gravel within the trench provide filtration of pollutants.
- New pavement provides proper drainage in areas with localized flooding prior to the project.
- Lighter colored paving absorbs less sunlight and lowers temperatures.

Completion Date
August 2015

Project Duration

Costs
Total Project Cost
~ $1.23 million
Construction
- $ 860,271
Design, Project Planning & Admin.
- $304,853
Monitoring & Outreach
- $68,640

Funding
$945,000 State Water Board Proposition 84 Stormwater Grant

Additional project support from:
City of San Jose Public Works and Environmental Services Departments

Photo: Design allows for better parking, improves bike/ pedestrian access, and reduces flooding in the alley.

LOCATION
Three alleys in the Martha Gardens neighborhood of San Jose (1st to 3rd St / Margaret to Martha St)
San Jose, CA
Project Outcomes and Lessons Learned

- Street sweeping is restored (previously not feasible due to poor pavement).
- Improved pavement is pedestrian and cyclist friendly.
- Infiltration trench is 4 ft. wide by 6 ft. deep, is fabric-lined on the sides, and is filled with porous stone.
- Concrete used is made from recycled flyash.
- The City created a “Green Streets Blue Bay” medallion installed on the street, a fact sheet, and video for public outreach about this project and stormwater runoff pollution in general. (Images at right are from the City’s fact sheet.)
- A block party was held to celebrate project completion.
- The project provides benefits to an area considered a disadvantaged community.

Operation and Maintenance

- City staff performs wet-weather inspections for clogging, ponding, and other conditions in need of additional maintenance.
- The City specifies use of regenerative air street sweepers within the alleys to maintain the permeability of the pavers.

Additional Information

City Website

Other Project Information Links
Project presentation on SCVURPPP website http://www.scvurppp-w2k.com/pdfs/1213/c3_workshop/07_Aguilar_San_Jose_Green_Street_Demonstration_Projects_Presentation.pdf

PROJECT CONTACTS

San Jose Environmental Services Division:
Supervising Environ. Services Specialist:
Jeff Sinclair
Jeff.Sinclair@sanjoseca.gov

Project Engineer:
Sal Kumar
Sal.Kumar@sanjoseca.gov
Project Description

The Allston Way project replaced aging pavement with a durable alternative to asphalt that also reduces stormwater runoff and associated pollution—pervious pavement. The project is also intended to function as a demonstration for future green infrastructure projects. It is the first public street in the Bay Area to install interlocking concrete pavers from curb to curb. Joint space filled with aggregate between the pavers allows rainwater to infiltrate.

Key Elements

- Project site is a public street with a total project surface area of 29,145 square feet
- Interlocking concrete pavers are installed in a herringbone pattern across the full width of Allston Way
- Design challenges include clay soil infiltration concerns and the street’s 3% longitudinal slope
- Underdrain was raised 6 inches above the sub-base to create some detention storage and allow infiltration into clay soil
- Yellow pavers were used in crosswalks and centerlines (instead of thermoplastic striping)

Completion Date
Winter 2014

Project Duration

Project Approved
April 29, 2014

Construction
Summer 2014

Monitoring
2015/2016

Costs

Total Project Cost
$ 2,000,315

Construction
- $ 1,739,315

Water-line construction
(Reimbursed by East Bay MUD)
- $ 261,000

Monitoring Cost
- $ 174,000

Funding

Project funding from gas tax money and City’s capital improvement fund

Other Project Features

Yellow pavers at crosswalks instead of thermoplastic striping

Photo: Cars and buses drive along interlocking pavers installed to infiltrate rainwater.
Project Outcomes and Lessons Learned

- Post-installation monitoring shows infiltration rate is better than estimated prior to project and initial data show the project is effective in reducing pollutants and peak flows.
- A roadway location with few driveways was selected so that the road could be closed for 3 months continuously during construction as installment in sections would be less economical.
- Reduced excavation depth required below pavement from 41 in. to 29 in. by altering design to include an 8-in. cellular confinement for the aggregate base to increase structural stability and strength. This saved time, off-haul cost, carbon emissions, and minimized risk to underlying utilities.
- Initial community concerns came from cyclist, wheelchair and skateboarding communities regarding street roughness. However, these communities did not report problems after installation. Today, many wheeled users travel the new ADA-compliant roadway daily.
- City Forestry Department is monitoring street tree health for signs of change or improvement.

Operation and Maintenance

- Maintenance plan and procedure manuals were created by the project consultants.
- Long-term cost of permeable interlocking concrete pavement estimated to be almost the same as a traditional pavement (<2% difference in 40-year life-cycle cost analysis).

Additional Information

Interlocking Concrete Pavement Institute Article
http://interlockdesign.org/tag/projects Scroll to “Why Aren’t All Streets Like This?” for a narrative article about project planning and construction details

Berkeleyside News Articles
http://www.berkeleyside.com/2015/10/29/staff-measure-m-has-berkeley-streets-in-better-shape/

PROJECT CONTACTS

City of Berkeley Public Works Department
Don Irby, P.E.
Phone: (510) 981-6439
Email: dirby@cityofberkeley.info

AECOM Engineer
Tom Sweet, P.E., LEED AP
Email: tom.sweet@aecom.com
SAN PABLO AVENUE
GREEN STREET PROJECT
EL CERRITO, CALIFORNIA

Project Description

The El Cerrito Green Streets Pilot Project consisted of installing a series of biotreatment areas (i.e. bioretention or rain garden cells) at two locations along San Pablo Avenue in the City of El Cerrito as part of a street improvement project. The project also included water quality monitoring and community education. The purpose of this pilot project was not only to directly improve water quality, but also to promote the public’s awareness of stormwater pollution, and expand local governments’ existing stormwater management strategies to include green infrastructure approaches.

Key Elements

- Installed biotreatment areas by retrofitting about 750 linear feet of City-owned sidewalk in a commercial area along a Caltrans highway
- Estimated total treatment volume of 20,700 cubic feet (minimum infiltration)
- Underdrains are plumbed to existing storm drain system
- Depressed biotreatment areas receive runoff from the street and sidewalk through curb cuts
- Outreach program engaged multiple target audiences throughout the project using video podcasts, interpretive signage in multiple languages, and educational pamphlets

Completion Date
July 2010

Project Duration
Begin Construction: March 2010
End Construction: July 2010

Costs
Total Project Cost $392,000
Construction - $215,295
Project Management & Coordination - $67,119
Monitoring - $97,712
Outreach - $11,871

Funding
$392,000 American Recovery and Reinvestment Act (ARRA)

Biotreatment
19 biotreatment areas treat approximately 1.3 acres of existing impervious area

Other Project Features
Outreach program
Water quality monitoring study

LOCATION
San Pablo Avenue at Madison St. and Eureka St. intersections
El Cerrito, CA

Photo: Individual biotreatment areas are separated by walkways to provide access between curbside parking and the sidewalk.
Project Outcomes and Lessons Learned

- Treatment cells are set back from the curb to allow pedestrians to step into or out of parked cars. Grate-covered inlets transport runoff to the treatment cells.
- Original wide sidewalk made siting possible.
- During construction, a water main was uncovered and designs had to be adjusted.
- Water quality monitoring results show rain garden cell is successful in reducing pollutant concentrations for most pollutants analyzed (with mixed results for mercury).
- Poor water conveyance through some curb cuts was identified in monitoring and is attributed, in part, to the location of plantings in the rain garden with respect to curb cuts.
- Outreach program reached more than 50 local stakeholders.
- Plants in rain gardens are thriving, adding aesthetic value that has been well received by the local community.

Operation and Maintenance

- The City maintenance staff continues landscape maintenance of the rain gardens using Bay Friendly techniques covered at a training session. (Staff training photo, lower right)
- City staff is trained on LID maintenance.

Additional Information

Final Project Certification Report:

SF Estuary - summary and links (including video podcasts):

PROJECT CONTACTS

City of El Cerrito:
Melanie Mintz
(510) 215-4339

San Francisco Estuary Partnership:
Josh Bradt
(510) 622-5048